
Python Seminar

March 16, 2017

1 Scientific Programming with Python

http://gdfa.ugr.es/python

1.1 Outline

• Introduction to Python
• Python for science, where to begin?
• Python language
• Scientific libraries

1.2 Introduction to Python

1.2.1 What is Python?

Python is a modern, general-purpose, object-oriented, high-level programming language.
General characteristics of Python:

• clean and simple language: Easy-to-read and intuitive code, easy-to-learn minimalistic syn-
tax, maintainability scales well with size of projects.

• expressive language: Fewer lines of code, fewer bugs, easier to maintain.

Technical details:

• dynamically typed: No need to define the type of variables, function arguments or return
types.

• automatic memory management: No need to explicitly allocate and deallocate memory for
variables and data arrays. No memory leak bugs.

• interpreted: No need to compile the code. The Python interpreter reads and executes the
python code directly.

1.2.2 Advantages:

• The main advantage is ease of programming, minimizing the time required to develop,
debug and maintain the code.

• Well designed language that encourage many good programming practices:
• Modular and object-oriented programming, good system for packaging and re-use of code.

This often results in more transparent, maintainable and bug-free code.

1

http://gdfa.ugr.es/python
http://nbviewer.jupyter.org/github/jrjohansson/scientific-python-lectures/blob/master/Lecture-0-Scientific-Computing-with-Python.ipynb#What-is-Python?
http://www.python.org

• Documentation tightly integrated with the code.
• A large standard library, and a large collection of add-on packages.
• Packaging of programs into standard executables, that work on computers without Python

installed.

1.2.3 Disadvantages:

• Since Python is an interpreted and dynamically typed programming language, the execu-
tion of python code can be slow compared to compiled statically typed programming lan-
guages, such as C and Fortran.

• Somewhat decentralized, with different environment, packages and documentation
spread out at different places. Can make it harder to get started.

1.2.4 What makes python suitable for scientific computing?

Nature 518, 125–126 (05 February 2015) | doi:10.1038/518125a

• Python has a strong position in scientific computing

– Large community of users, easy to find help and documentation.

• Extensive ecosystem of scientific libraries

– NumPy: numerical Python ≈ MATLAB matrices and arrays
– SciPy: scientific Python ≈ MATLAB toolboxes
– pandas: extends NumPy
– Matplotlib: graphics library
– Sympy: symbolic mathematics library

• Scientific (and non-scientific) development environments available

– spyder: MATLAB-like environment
– Jupyter/IPython notebooks: environment for interactive and exploratory Python
– Rodeo: new Python environment for data science
– PyCharm: Python enviroment for developers

• Great performance due to close integration with time-tested and highly optimized codes
written in C and Fortran

• Readily available and suitable for use on high-performance computing clusters

• No license costs, no unnecessary use of research budget

1.3 Python for science, where to begin?

1.3.1 Why to choose Python 2?

• Python 3 is better, but some non-widespread science modules are still not compatible
• Differences between Python 2 and 3 are relatively minor
• Python 2 is actively supported. For example, Linux distributions and Macs are still using

2.x as default

2

https://doi.org/10.1038/518125a
http://www.numpy.org
http://www.scipy.org
http://pandas.pydata.org
http://www.matplotlib.org
http://www.sympy.org
https://github.com/spyder-ide/spyder
http://jupyter.org
http://rodeo.yhat.com
https://www.jetbrains.com/pycharm

3

1.3.2 Scientific-oriented Python Distributions

Provide a Python interpreter with commonly used scientific libraries in science like NumPy,
SciPy, Pandas, matplotlib, etc. already installed. In the past, it was usually painful to build some
of these packages. Also, include development environments with advanced editing, debugging
and introspection features.

• Anaconda

– Cross-platform
– Supports Python 2 and 3
– Most widely adopted

• Canopy

– Cross-platform
– Only supports Python 2

• Python(x,y)

– Windows-only platform
– Only support Python 2

4

https://www.continuum.io/downloads
https://store.enthought.com/downloads
http://python-xy.github.io/downloads.html

5

6

1.3.3 Anaconda navigator

1.3.4 Anaconda navigator: installing new packages

1.3.5 spyder

1.3.6 IPython/Jupyter notebooks

1.3.7 Rodeo (need to be installed separately from Anaconda)

1.3.8 PyCharm (need to be installed separately from Anaconda)

Editor Learning curve Users Benefits

spyder pretty short Matlab and R background mature, many features
rodeo pretty short Matlab and R background modern, essential features
IPython/Jupyter smooth teachers interactive
PyCharm moderate developers code quality

1.3.9 Where to look for help?

• Official documentation: http://www.scipy.org/docs.html
• Usually included in development environments as contextual help:

– spyder: Ctrl+I (Windows) or Cmd+I (Mac)
– PyCharm: F1 (Windows/Mac)
– Rodeo: ?f in the console

• Be careful about code you get on the internet!

• Dedicated offline documentation browser (Python, LaTeX, C++, Java, Bootstrap, Bash, ...):

– Zeal (Windows/Linux): Free
– Dash (Mac): Commercial
– Velocity (Windows): Commercial

1.4 Python language

1.4.1 Using Python as a Calculator

In [1]: 2 + 2

Out[1]: 4

In [2]: 17 / 3 # int / int -> int

Out[2]: 5

In [3]: from __future__ import division
17 / 3

Out[3]: 5.666666666666667

7

http://www.scipy.org/docs.html
https://zealdocs.org
https://kapeli.com/dash
http://velocity.silverlakesoftware.com

1.4.2 Strings

In [4]: prefix = 'Py'
word = prefix + 'thon'

character in position 0
print word[0]

characters from position 0 (included) to 6 (excluded)
print word[0:6]

P
Python

Note

• 0-based indexing
• half-open range indexing: [a, b)
• print statement to get outputs
• line comments

1.4.3 Lists

In [5]: # empty list
squares = []

lists might contain items of different types
squares = ['cat', 4, 3.2]

8

negative indices mean count backwards from end of sequence
print squares[-1]

list concatenation
squares = squares + [81, 'dog']

list functions
squares.remove(3.2) # remove the first ocurrence
squares.append('horse') # concatenation: same as +

print squares

3.2
['cat', 4, 81, 'dog', 'horse']

In [6]: a = ['a', 'b', 'c']
n = [1, 2, 3]

it is possible to nest lists
(create lists containing other lists)
x = [a, n]

print x
print x[0]
print x[0][1]

[['a', 'b', 'c'], [1, 2, 3]]
['a', 'b', 'c']
b

1.4.4 Simple code: Fibonacci series

In [7]: a, b = 0, 1
while a < 10:

print a,
the sum of two elements defines the next
a, b = b, a + b

0 1 1 2 3 5 8

Note

• indentation level of statements is significant
• multiple assignment

9

1.4.5 if Statements

In [8]: x = -4

if x < 0:
x = 0
print 'Negative changed to zero'

elif x == 0:
print 'Zero'

elif x == 1:
print 'Single'

else:
print 'More'

Negative changed to zero

1.4.6 for Statements

In [9]: words = ['cat', 'window', 'defenestrate']

for w in words:
len returns the number of items of an object.
print w, len(w)

cat 3
window 6
defenestrate 12

Warning

Please avoid Matlab-like for statements

In [10]: for w in range(len(words)):
print words[w], len(words[w])

cat 3
window 6
defenestrate 12

range(stop)

Built-in function to create lists containing arithmetic progressions.

In [11]: print range(10)
print range(0, 10, 3)
print range(0, -10, -1)

10

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
[0, 3, 6, 9]
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]

In [12]: for i in range(4):
print 'cat',

cat cat cat cat

In [13]: words = ['cat', 'window', 'defenestrate']

for i, w in enumerate(words):
print i, w

0 cat
1 window
2 defenestrate

1.4.7 Functions

In [14]: def fib(n):
"""Build a Fibonacci series up to n.

Args:
n: upper limit.

Returns:
A list with a Fibonacci series up to n.

"""
f = [] # always initialize the returned value!

a, b = 0, 1
while a < n:

f.append(a)
the sum of two elements defines the next
a, b = b, a + b

return f

now call the function we just defined:
print fib(1000)

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

11

1.4.8 Functions: documentation strings (docstrings)

• Python documentation strings (docstrings) provide a convenient way of associating docu-
mentation with Python functions and modules.

• Docstrings can be written following several styles. We use Google Python Style Guide.
• An object’s docsting is defined by including a string constant as the first statement in the

function’s definition.
• Unlike conventional source code comments the docstring should describe what the func-

tion does, not how.
• All functions should have a docstring.
• This allows to inspect these comments at run time, for instance as an interactive help system,

or export them as HTML, LaTeX, PDF or other formats.

1.4.9 Functions: default argument values

In [15]: def fib(n, s=0):
"""Build a Fibonacci series up to n.

Args:
n: upper limit.
s: lower limit. Default 0.

Returns:
A list with a Fibonacci series up to n.

12

https://sphinxcontrib-napoleon.readthedocs.io/en/latest/

13

"""
f = [] # always initialize the returned value!

a, b = 0, 1
while a < n:

if a >= s: # lower limit
f.append(a)

the sum of two elements defines the next
a, b = b, a + b

return f

print fib(1000, 15)
print fib(1000, 0)
print fib(1000)

[21, 34, 55, 89, 144, 233, 377, 610, 987]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]

1.4.10 Functions: keyword arguments

In [16]: print fib(1000, 15) # positional arguments
print fib(s=15, n=1000) # keyword arguments

[21, 34, 55, 89, 144, 233, 377, 610, 987]
[21, 34, 55, 89, 144, 233, 377, 610, 987]

1.4.11 Functions: returning multiple values

In [17]: def fib(n, s=0):
"""Build a Fibonacci series up to n.

Args:
n: upper limit.
s: lower limit. Default 0.

Returns:
(f, l):

* ``f``: list with a Fibonacci series up to n.
* ``l``: length of Fibonacci series.

"""
f = [] # always initialize return values!
l = 0

a, b = 0, 1

14

while a < n:
if a >= s: # lower limit

f.append(a)
the sum of two elements defines the next
a, b = b, a + b

l = len(f) # number of elements

return f, l

a, b = fib(1000)
print a
print b

c = fib(1000)
print c

[0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987]
17
([0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987], 17)

1.4.12 Functions: importing external functions

In [18]: import fibonacci # without .py extension

print fibonacci.fib(3)

[0, 1, 1, 2]

In [19]: from fibonacci import fib

print fib(3)

[0, 1, 1, 2]

In [20]: import fibonacci as f # alias

print f.fib(3)

[0, 1, 1, 2]

Recommendation

The best way to import libraries is included in their official help

Some examples:

15

import math
import numpy as np
from scipy import linalg, optimize
import pandas as pd
import matplotlib as mpl
import matplotlib.pyplot as plt
import sympy

1.4.13 Functions: main

fibonacci.py

if __name__ == '__main__':
print fib(1000)

A file fibonacci.py can be used in two ways.

• imported in another file: import fibonacci. In this case internal variable __name__ is
fibonacci (the name of the imported module), and print fib(1000) does not get executed

• executed directly: python foo.py. In this case internal variable __name__ have a value
__main__, and print fib(1000) does get executed

1.4.14 Functions: modules and packages

Modules in Python are simply Python files with the .py extension, which implement a set of
functions. Modules are imported from other modules using the import command.

Packages are simply directories which contain a special file called __init__.py. This file can
be empty, and it indicates that the directory it contains is a Python package, so it can be imported
the same way a module can be imported. Packages contain multiple modules and packages
themselves.

1.4.15 Functions: passing arguments by assignment

Arguments are passed by assignment in Python. Since assignment just creates references to ob-
jects, it depends on the mutability of the arguments if they will be altered or not inside functions.

Common immutable type:

• numbers: int, float, complex
• immutable sequences: str (strings), tuple

Common mutable type (almost everything else):

• mutable sequences: list
• mapping type: dict
• classes: ndarray (numpy arrays), Series (pandas one-dimensional array), DataFrame (pandas

2-dimensional array)

The function deepcopy(x) from module copy is available when it is needed to make a copy of
a mutable argument to avoid its modification inside a function:

16

1.4.16 Procedures: functions without a return value

A procedure is a sub-routine that does not return a value, but does have side-effects. This could
be writing to a file, printing to the screen, or modifying the value of its input.

Therefore, in Python, there is not difference between function and procedures, except a proce-
dure does not contain a return statement.

def print_cat():
for i in range(4):

print 'cat',

In [21]: import copy

nums = [1, 2, 3]

def add_zero_w_copy(l):
l_tmp = copy.deepcopy(l)
l_tmp.append(0)

def add_zero_wo_copy(l):
l.append(0)

add_zero_w_copy(nums)
print nums

add_zero_wo_copy(nums)
print nums

[1, 2, 3]
[1, 2, 3, 0]

1.4.17 Code Style

• Style Guide for Python Code: PEP8.
• Use only English (ASCII) characters for variables, functions and files. It is possible to

use non-English characters in strings and comments by adding the following line at the
beginning of each file: # -*- coding: utf-8 -*-.

• Name your variables, functions and files consistently: the convention is to use
lower_case_with_underscores.

• We all use single-quoted strings to be consistent. Nevertheless, single-quoted strings and
double-quoted strings are the same. PEP does not make a recommendation for this, except
for function documentation where tripe-quote strings should be used.

• Constants should be written in ALL_CAPITAL_LETTERS with underscores separating
words

• Use spaces around operators and after commas, but not directly inside bracketing constructs:
a = f(1, 2) + g(3, 4)

• To avoid conflicts with Python keywords, simple add a single trailing_underscore: abs_

17

1.4.18 PEP8 exceptions:

Long lines It is very conservative and requires limiting lines to 79 characters. We use all lines
to a maximum of 119 characters. This is the default behaviour in PyCharm.

Disable checks in one line Skip validation in one lines by adding following comment:
nopep8

1.4.19 datetime data type

The datetime module supplies classes for manipulating dates and times. Avoid converting dates
or times to int (datenum or similar).

In [22]: from datetime import datetime, date, time
Using datetime.combine()
d = date(2005, 7, 14)
t = time(12, 30)
dt1 = datetime.combine(d, t)

print dt1
print dt1.year

2005-07-14 12:30:00
2005

In [23]: from datetime import timedelta

dt2 = dt1 + timedelta(hours=5)

print dt2

2005-07-14 17:30:00

timedelta([days[, seconds[, microseconds[, milliseconds[, minutes[, hours[,
weeks]]]]]]])

All arguments are optional and default to 0. Arguments may be ints, longs, or floats,
and may be positive or negative.

1.4.20 boolean data type

boolean values are the two constant objects False and True. In numeric contexts (for example
when used as the argument to an arithmetic operator), they behave like the integers 0 and 1,
respectively.

Nevertheless, other values can also be considered false or true: * the following values are
considered false: 0, '', [], (), {}, None * all other values are considered true, so objects of many
types are always true

18

1.4.21 Recommended preferences settings for spyder

Plots on a separate window

• IPython console -> Graphics -> Graphics backend -> Automatic.

It is necessary to restart spyder (or at least IPython kernel) to take affect.

Activate PEP8 checking

• Preferences -> Editor -> Code Instropection/Analysis -> Analysis -> Style analysis
(pep8)

Modify the maximum line length:

Step 1

• Preferences -> Editor -> Show vertical line after 119 characters

Step 2

• Create a file:

Windows Mac

file name .pep8 pep8
folder user folder (usually

C:\Users\<username>)
~/.config (usually
/Users/<username>)

With the following content:

[pep8]
max-line-length = 119

1.4.22 More on list

The list data type has some more methods. Here are all of the methods of list objects:
append(x) Add an item to the end of the list; equivalent to a[len(a):] = [x].
extend(L) Extend the list by appending all the items in the given list; equivalent to a[len(a):]

= L.
insert(i, x) Insert an item at a given position. The first argument is the index of the element

before which to insert, so a.insert(0, x) inserts at the front of the list, and a.insert(len(a), x) is
equivalent to a.append(x).

remove(x) Remove the first item from the list whose value is x. It is an error if there is no such
item.

pop([i]) Remove the item at the given position in the list, and return it. If no index is speci-
fied, a.pop() removes and returns the last item in the list. (The square brackets around the i in the
method signature denote that the parameter is optional, not that you should type square brackets
at that position. You will see this notation frequently in the Python Library Reference.)

19

index(x) Return the index in the list of the first item whose value is x. It is an error if there is
no such item.

count(x) Return the number of times x appears in the list.
sort(cmp=None, key=None, reverse=False) Sort the items of the list in place (the arguments

can be used for sort customization, see sorted() for their explanation).
reverse() Reverse the elements of the list, in place.

1.4.23 List comprehensions

List comprehensions provide a concise way to create lists. Common applications are to make
new lists where each element is the result of some operations applied to each member of another
sequence or iterable, or to create a subsequence of those elements that satisfy a certain condition.

For example, assume we want to create a list of squares, like:

In [24]: squares = []
for x in range(10):

squares.append(x**2)

print squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

We can obtain the same result with:

In [25]: squares = []
squares = [x**2 for x in range(10)]

print squares

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

A list comprehension consists of brackets containing an expression followed by a for clause,
then zero or more for or if clauses. The result will be a new list resulting from evaluating the
expression in the context of the for and if clauses which follow it.

1.4.24 Lambda expressions

Small anonymous functions can be created with the lambda keyword. To create a lambda func-
tion first write keyword lambda followed by one of more arguments separated by comma, fol-
lowed by colon sign (:), followed by a single line expression. Note that lambda function cannot
contain more than one expression.

In [26]: print map(lambda x: x**2, range(10))

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

map(function, iterable, ...) > Apply function to every item of iterable and return a list
of the results.

20

1.4.25 Dictionaries

A dictionary is a data type which allows to store data just like a list, but instead of using only
numbers to get the data it is possible to use strings or other data types as the index. This is very
useful for storing and organizing data. Note that dictionaries are unordered key-value-pairs.

In [27]: tel = {'jack': 4098, 'sape': 4139}

tel['guido'] = 4127
print tel

print tel['jack']

{'sape': 4139, 'jack': 4098, 'guido': 4127}
4098

Note

OrderedDict is available if you need a ordered dictionary.

In [28]: from collections import OrderedDict

ordered_tel = OrderedDict([('jack', 4098),('sape', 4139),
('guido', 4127)])

print ordered_tel

OrderedDict([('jack', 4098), ('sape', 4139), ('guido', 4127)])

1.4.26 Sets

A set object is an unordered collection of distinct objects.

In [29]: s = set([1, 0, 2, 2, 3])

print s

set([0, 1, 2, 3])

1.4.27 One line if statement

<expression1> if <condition> else <expression2>

In [30]: age = 15
Conditions are evaluated from left to right
print('kid' if age < 18 else 'adult')

kid

21

Programming languages derived from C usually have following syntax:
<condition> ? <expression1> : <expression2>
The creator of Python, Guido van Rossum, rejected it as non-Pythonic, since it is hard to un-

derstand for people not used to C.

1.4.28 Logging

Logging is a means of tracking events that happen when some software runs. The software’s
developer adds logging calls to their code to indicate that certain events have occurred. An event
is described by a descriptive message which can optionally contain variable data (i.e. data that is
potentially different for each occurrence of the event). Events also have an importance which the
developer ascribes to the event; the importance can also be called the level or severity.

The logging is better than printing because:

• It is easy to put a timestamp in each message, which is very handy.
• You can have different levels of urgency for messages, and filter out less urgent messages.
• When you want to later find/remove log messages, you will not get them confused for real

print() calls.
• If you just print to a log file, it is easy to leave the log function calls in and just ignore them

when you do not need them. You do not have to constantly pull out print() calls.

To print log messages to the screen:

import logging
logging.basicConfig(level=logging.DEBUG,

format='%(asctime)s - %(levelname)s - %(message)s')
logging.info('added %s and %s to get %s' % (x, y, z))

To write log messages to a file:

import logging
logging.basicConfig(filename='log_filename.txt',

level=logging.DEBUG,
format='%(asctime)s - %(levelname)s - %(message)s')

logging.info('added %s and %s to get %s' % (x, y, z))

The different levels of logging, from highest urgency to lowest urgency, are:

logging.critical('This is a critical message.')
logging.error('This is an error message.')
logging.warning('This is a warning message.')
logging.info('This is an informative message.')
logging.debug('This is a low-level debug message.')

The level argument in logging.basicConfig call sets the minimum log level of messages it
actually logs.

22

1.5 Scientific libraries

1.5.1 NumPy

NumPy’s main object is the homogeneous multidimensional array (ndarray). It is a table of
elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In
Numpy dimensions are called axes. The number of axes is rank.

In [31]: import numpy as np

defining arrays and matrices
Z = np.array([1, 3, 4])

A = np.array([[1, 1],
[0, 1]])

B = np.array([[2, 0],
[3, 4]])

In [32]: # selecting elements
print A[0, :]

elementwise product with * operator!
print A * B

matrix product
print np.dot(A, B)

[1 1]
[[2 0]
[0 4]]

[[5 4]
[3 4]]

In [33]: from numpy.linalg import solve, inv # linear algebra

a = np.linspace(-np.pi, np.pi, 10)
print a

a = np.array([[1, 2, 3], [3, 4, 6.7], [5, 9.0, 5]])
print a

b = np.array([3, 2, 1])
print solve(a, b) # solve the equation ax = b

[-3.14159265 -2.44346095 -1.74532925 -1.04719755 -0.34906585 0.34906585
1.04719755 1.74532925 2.44346095 3.14159265]

[[1. 2. 3.]
[3. 4. 6.7]
[5. 9. 5.]]

23

[-4.83050847 2.13559322 1.18644068]

In [34]: print inv(a)

[[-2.27683616 0.96045198 0.07909605]
[1.04519774 -0.56497175 0.1299435]
[0.39548023 0.05649718 -0.11299435]]

In [35]: print a.transpose()

[[1. 3. 5.]
[2. 4. 9.]
[3. 6.7 5.]]

Warning

The transpose of a 1D array is still a 1D array. If you want to turn your 1D vector into
a 2D array and then transpose it, just slice it with np.newaxis.

In [36]: print b
print b.transpose()
print b[:, np.newaxis]

[3 2 1]
[3 2 1]
[[3]
[2]
[1]]

ndim the number of axes (dimensions) of the array. In the Python world, the number of di-
mensions is referred to as rank.

shape the dimensions of the array. This is a tuple of integers indicating the size of the array in
each dimension. For a matrix with n rows and m columns, shape will be (n, m). The length of the
shape tuple is therefore the rank, or number of dimensions, ndim.

size the total number of elements of the array. This is equal to the product of the elements of
shape.

dtype an object describing the type of the elements in the array. One can create or spec-
ify dtype’s using standard Python types. Additionally NumPy provides types of its own.
numpy.int32, numpy.int16, and numpy.float64 are some examples.

Warning

When operating and manipulating arrays, their data is sometimes copied into a new
array and sometimes not. For example, simple assignments make no copy of array
objects or of their data.

24

Vectorization Numpy arrays enable you to express batch operations on data without writing
any for loops. This is usually called vectorization:

• vectorized code is more concise and easier to read
• fewer lines of code generally means fewer bugs
• the code more closely resembles standard mathematical notation

But:

sometimes it’s difficult to move away from the for-loop school of thought

1.5.2 Pandas

Pandas is a newer package built on top of NumPy and pandas objects are valid arguments to
most NumPy functions:

• fast and efficient Series (1-dimensional) and DataFrame (2-dimensional) heterogeneous
objects for data manipulation with integrated indexing

• tools for reading and writing data from different formats: CSV and text files, Microsoft
Excel, SQL databases, HDF5...

• intelligent label-based slicing
• time series-functionality
• integrated handling of missing data

In [37]: import pandas as pd

ignore the following commands
just for the slides
pd.set_option("display.max_rows", 10)
pd.set_option("display.max_columns", 5)

simar = pd.read_table('WANA_2006008_Algeciras.txt',
delim_whitespace=True,
parse_dates= {'date' : [0,1,2,3]},
index_col='date', skiprows=70)

simar

Out[37]: Hm0 Tm02 ... VelV DirV
date ...
1996-01-14 03:00:00 0.5 2.2 ... 4.5 176.0
1996-01-14 06:00:00 0.5 2.3 ... 4.3 193.0
1996-01-14 09:00:00 0.4 2.3 ... 4.3 193.0
1996-01-14 12:00:00 0.7 2.6 ... 8.7 118.0
1996-01-14 15:00:00 0.9 3.0 ... 8.7 118.0
...
1996-12-31 09:00:00 2.5 4.4 ... 17.1 241.0
1996-12-31 12:00:00 2.0 4.1 ... 15.4 263.0
1996-12-31 15:00:00 2.0 4.1 ... 15.4 263.0

25

1996-12-31 18:00:00 1.4 3.6 ... 12.4 263.0
1996-12-31 21:00:00 1.4 3.5 ... 12.4 263.0

[2823 rows x 14 columns]

read_table(...)

Read general delimited file into DataFrame.

• delim_whitespace: boolean, default False. Specifies whether or not whitespace
(e.g. ’ ’ or ’ ’) will be used as the sep.

• parse_dates: boolean or list of ints or names or list of lists or dict, default False
boolean. dict, e.g. {‘foo’ : [1, 3]} -> parse columns 1, 3 as date and call result ‘foo’

• index_col: int or sequence or False, default None. Column to use as the row
labels of the DataFrame.

• skiprows: list-like or integer, default None. Line numbers to skip (0-indexed) or
number of lines to skip (int) at the start of the file

• header: int or list of ints, default ‘infer’. Row number(s) to use as the column
names, and the start of the data. Default behavior is as if set to 0 if no names
passed, otherwise None.

In [38]: simar['Hm0'] # selecting a single column

Out[38]: date
1996-01-14 03:00:00 0.5
1996-01-14 06:00:00 0.5
1996-01-14 09:00:00 0.4
1996-01-14 12:00:00 0.7
1996-01-14 15:00:00 0.9

...
1996-12-31 09:00:00 2.5
1996-12-31 12:00:00 2.0
1996-12-31 15:00:00 2.0
1996-12-31 18:00:00 1.4
1996-12-31 21:00:00 1.4
Name: Hm0, dtype: float64

In [39]: simar[['Hm0', 'Tp']] # selecting several columns using a list

Out[39]: Hm0 Tp
date
1996-01-14 03:00:00 0.5 2.7
1996-01-14 06:00:00 0.5 2.9
1996-01-14 09:00:00 0.4 2.9
1996-01-14 12:00:00 0.7 3.2
1996-01-14 15:00:00 0.9 3.9
...
1996-12-31 09:00:00 2.5 5.7
1996-12-31 12:00:00 2.0 5.2

26

1996-12-31 15:00:00 2.0 5.2
1996-12-31 18:00:00 1.4 4.7
1996-12-31 21:00:00 1.4 4.7

[2823 rows x 2 columns]

In [40]: simar.iloc[0:3] # selecting rows by position

Out[40]: Hm0 Tm02 ... VelV DirV
date ...
1996-01-14 03:00:00 0.5 2.2 ... 4.5 176.0
1996-01-14 06:00:00 0.5 2.3 ... 4.3 193.0
1996-01-14 09:00:00 0.4 2.3 ... 4.3 193.0

[3 rows x 14 columns]

In [41]: print simar.loc['1996-01-14 03:00:00'] # selecting rows by label

Hm0 0.5
Tm02 2.2
Tp 2.7
DirM 185.0
Hm0_V 0.4

...
Hm0_F2 0.0
Tm02_F2 0.0
DirM_F2 0.0
VelV 4.5
DirV 176.0
Name: 1996-01-14 03:00:00, dtype: float64

In [42]: # selecting columns and rows

print simar.loc['1996-01-14 03:00:00', 'Hm0'] # selection by label
print simar.iloc[0, 0] # selection by position
print simar.ix[0, 'Hm0'] # mixed integer and label based selection

0.5
0.5
0.5

In [43]: simar.iloc[:,0]

Out[43]: date
1996-01-14 03:00:00 0.5
1996-01-14 06:00:00 0.5
1996-01-14 09:00:00 0.4

27

1996-01-14 12:00:00 0.7
1996-01-14 15:00:00 0.9

...
1996-12-31 09:00:00 2.5
1996-12-31 12:00:00 2.0
1996-12-31 15:00:00 2.0
1996-12-31 18:00:00 1.4
1996-12-31 21:00:00 1.4
Name: Hm0, dtype: float64

In [44]: simar.describe()

Out[44]: Hm0 Tm02 ... VelV DirV
count 2823.000000 2823.000000 ... 2823.000000 2823.000000
mean 1.206412 3.432164 ... 9.565604 169.971661
std 0.729701 0.880544 ... 3.607439 92.598314
min 0.100000 1.300000 ... 0.000000 0.000000
25% 0.700000 2.800000 ... 6.800000 80.000000
50% 1.000000 3.300000 ... 9.600000 191.000000
75% 1.600000 4.000000 ... 12.000000 260.000000
max 5.200000 7.400000 ... 20.700000 360.000000

[8 rows x 14 columns]

In [45]: simar['Hm0'].value_counts() # histogram

Out[45]: 0.7 246
0.5 195
0.6 192
1.0 189
0.8 185

...
3.9 4
4.0 3
5.2 2
3.7 2
4.2 1
Name: Hm0, dtype: int64

In [46]: simar.dropna(how='all')

Out[46]: Hm0 Tm02 ... VelV DirV
date ...
1996-01-14 03:00:00 0.5 2.2 ... 4.5 176.0
1996-01-14 06:00:00 0.5 2.3 ... 4.3 193.0
1996-01-14 09:00:00 0.4 2.3 ... 4.3 193.0
1996-01-14 12:00:00 0.7 2.6 ... 8.7 118.0
1996-01-14 15:00:00 0.9 3.0 ... 8.7 118.0
...

28

1996-12-31 09:00:00 2.5 4.4 ... 17.1 241.0
1996-12-31 12:00:00 2.0 4.1 ... 15.4 263.0
1996-12-31 15:00:00 2.0 4.1 ... 15.4 263.0
1996-12-31 18:00:00 1.4 3.6 ... 12.4 263.0
1996-12-31 21:00:00 1.4 3.5 ... 12.4 263.0

[2823 rows x 14 columns]

dropna(axis=0, how='any', thresh=None, subset=None, inplace=False)

Return object with labels on given axis omitted where alternately any or all of the data
are missing * how: {‘any’, ‘all’}. any: if any NA values are present, drop that label. all:
if all values are NA, drop that label * axis: {0 or ‘index’, 1 or ‘columns’}, or tuple/list
thereof. Pass tuple or list to drop on multiple axes

In [47]: # selecting with complex criteria

simar[(simar['Hm0'] == 0.5) & (simar['VelV'] == 4.5)]

Out[47]: Hm0 Tm02 ... VelV DirV
date ...
1996-01-14 03:00:00 0.5 2.2 ... 4.5 176.0
1996-08-30 06:00:00 0.5 2.4 ... 4.5 195.0
1996-08-30 09:00:00 0.5 2.4 ... 4.5 195.0
1996-10-23 18:00:00 0.5 2.8 ... 4.5 98.0
1996-10-23 21:00:00 0.5 2.6 ... 4.5 98.0

[5 rows x 14 columns]

In [48]: simar[(simar['Hm0'] == 0.5) | (simar['VelV'] == 4.5)]

Out[48]: Hm0 Tm02 ... VelV DirV
date ...
1996-01-14 03:00:00 0.5 2.2 ... 4.5 176.0
1996-01-14 06:00:00 0.5 2.3 ... 4.3 193.0
1996-01-19 21:00:00 0.5 3.7 ... 3.6 251.0
1996-01-26 21:00:00 0.5 2.6 ... 5.4 178.0
1996-02-02 12:00:00 0.4 2.2 ... 4.5 243.0
...
1996-12-07 15:00:00 0.5 2.4 ... 6.1 207.0
1996-12-08 00:00:00 0.5 2.2 ... 6.5 225.0
1996-12-15 00:00:00 0.5 2.4 ... 5.8 258.0
1996-12-16 03:00:00 0.5 2.6 ... 4.0 59.0
1996-12-26 15:00:00 0.5 2.3 ... 6.8 77.0

[205 rows x 14 columns]

Warning

29

It is necessary to use boolean vectors to perform this kind of operations to filter the
data. The operators are: | for or, & for and, and ~ for not. These must be grouped by
using parentheses.

Otherwise, you will get the following error message: ValueError: The truth
value of an array with more than one element is ambiguous. Use a.any()
or a.all().

In recent versions, it is possible to use query to create this kind of selection criteria.

In [49]: simar.query('Hm0 == 0.5 and VelV == 4.5')

Out[49]: Hm0 Tm02 ... VelV DirV
date ...
1996-01-14 03:00:00 0.5 2.2 ... 4.5 176.0
1996-08-30 06:00:00 0.5 2.4 ... 4.5 195.0
1996-08-30 09:00:00 0.5 2.4 ... 4.5 195.0
1996-10-23 18:00:00 0.5 2.8 ... 4.5 98.0
1996-10-23 21:00:00 0.5 2.6 ... 4.5 98.0

[5 rows x 14 columns]

1.5.3 SciPy

SciPy is a collection of mathematical algorithms and convenience functions built on the Numpy
extension of Python.

• Clustering algorithms (scipy.cluster)
• Physical and mathematical constants (scipy.constants)
• Fast Fourier Transform routines (scipy.fftpack)
• Integration and ordinary differential equation solvers (scipy.integrate)
• Interpolation and smoothing splines (scipy.interpolate)
• Input and Output (scipy.io)
• Linear algebra (scipy.linalg)
• N-dimensional image processing (scipy.ndimage)
• Orthogonal distance regression (scipy.odr)
• Optimization and root-finding routines (scipy.optimize)
• Signal processing (scipy.signal)
• Sparse matrices and associated routines (scipy.sparse)
• Spatial data structures and algorithms (scipy.spatial)
• Special functions (scipy.special)
• Statistical distributions and functions (scipy.stats)
• C/C++ integration (scipy.weave)

1.5.4 matplotlib

matplotlib is a library for making plots in Python. The main component of matplotlib is pylab
which allow the user to create plots with code quite similar to MATLAB figure generating code.
matplotlib has its origins in emulating the MATLABő graphics commands.

30

In [50]: # ignore the following command
just for the slides
%matplotlib inline

import matplotlib.pyplot as plt

plt.figure(1, figsize=(10, 6))
plt.plot(simar.index, simar['Hm0'], 'b')
plt.xticks(rotation=30)
plt.title('Simar Algeciras')
plt.ylabel('Hm_0')

plt.savefig('wana.png') # save to file
plt.show() # display on screen

In [51]: plt.style.use('ggplot') # pre-defined styles

plt.figure(2, figsize=(10, 6))
plt.plot(simar.index, simar['Hm0'], 'b')
plt.xticks(rotation=30)
plt.title('Simar Algeciras')
plt.ylabel('Hm_0')

plt.show()

31

In [52]: plt.figure(3, figsize=(10, 6))

plt.subplot(311)
plt.plot(simar.index, simar['Hm0'], 'b')
plt.ylabel('Hm_0')
plt.xticks([])

plt.subplot(312)
plt.plot(simar.index, simar['Tp'], 'c')
plt.ylabel('T_p')
plt.xticks(rotation=30)

plt.show()

32

Fourier Transform (full code)

In [53]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

Input data
df = pd.read_csv('T130_6_1_2.csv', sep=',',skiprows=2,

header=None, error_bad_lines=False, na_values='',
skipinitialspace=True)

df

Out[53]: 0 1 ... 8 9
0 0.019507 -0.015088 ... NaN 908.778442
1 0.204670 -0.005019 ... NaN NaN
2 0.205357 -0.005533 ... NaN NaN
3 0.208304 -0.007504 ... NaN NaN
4 0.278389 -0.027514 ... NaN NaN
...
1669 NaN NaN ... NaN NaN
1670 NaN NaN ... NaN NaN
1671 NaN NaN ... NaN NaN
1672 NaN NaN ... NaN NaN
1673 NaN NaN ... NaN NaN

33

[1674 rows x 10 columns]

In [54]: # One-dimensional discrete Fourier Transform
y = np.fft.fft(df[1].dropna())
n = len(y)
y = y[range(int(n/2))]
t = np.linspace(0, 1, int(n/2)) # Frecuency generation

plt.style.use('ggplot')

Signal plot
plt.figure(4, figsize=(10, 6))
plt.plot(df[5], df[6], '-c', label='v2')
plt.plot(df[0], df[1], '-.b', label='v1')
plt.xlabel('time (s)', weight='bold')
plt.ylabel('velocity (m/s)', weight='bold')
plt.legend(loc=2)
plt.xticks(rotation=70)

Signal and spectral amplitude plots
plt.figure(5, figsize=(10, 8))

plt.subplot(511)
plt.plot(df[0], df[1], 'b')
plt.xlabel('Time', weight='bold')
plt.ylabel('Amplitude', weight='bold')

plt.subplot(512)
plt.plot(t, abs(y), 'c')
plt.xlabel('Freq (Hz)', weight='bold')
plt.ylabel('|Y(freq)|', weight='bold')

plt.show()

34

1.5.5 Sympy

SymPy is a Python library for symbolic mathematics.

In [55]: from sympy import symbols, init_printing

init_printing() # pretty printing

x, y = symbols('x y')
expr = x + 2*y

expr

Out[55]:

x + 2y

In [56]: expr + 1

Out[56]:

x + 2y + 1

Derivative of sin(x)ex

In [57]: from sympy import diff, sin, exp

diff(sin(x)*exp(x), x)

Out[57]:

ex sin (x) + ex cos (x)

Compute
∫
(ex sin (x) + ex cos (x)) dx

35

In [58]: from sympy import integrate, cos

integrate(exp(x) * sin(x) + exp(x) * cos(x), x)

Out[58]:

ex sin (x)

Compute
∫ ∞
−∞ sin (x2) dx

In [59]: from sympy import oo

integrate(sin(x**2), (x, -oo, oo))

Out[59]:
√

2
√

π

2

36

	Scientific Programming with Python
	Outline
	Introduction to Python
	What is Python?
	Advantages:
	Disadvantages:
	What makes python suitable for scientific computing?

	Python for science, where to begin?
	Why to choose Python 2?
	Scientific-oriented Python Distributions
	Anaconda navigator
	Anaconda navigator: installing new packages
	spyder
	IPython/Jupyter notebooks
	Rodeo (need to be installed separately from Anaconda)
	PyCharm (need to be installed separately from Anaconda)
	Where to look for help?

	Python language
	Using Python as a Calculator
	Strings
	Lists
	Simple code: Fibonacci series
	if Statements
	for Statements
	Functions
	Functions: documentation strings (docstrings)
	Functions: default argument values
	Functions: keyword arguments
	Functions: returning multiple values
	Functions: importing external functions
	Functions: main
	Functions: modules and packages
	Functions: passing arguments by assignment
	Procedures: functions without a return value
	Code Style
	PEP8 exceptions:
	datetime data type
	boolean data type
	Recommended preferences settings for spyder
	More on list
	List comprehensions
	Lambda expressions
	Dictionaries
	Sets
	One line if statement
	Logging

	Scientific libraries
	NumPy
	Pandas
	SciPy
	matplotlib
	Sympy

